Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 700
Filtrar
1.
Biomacromolecules ; 25(5): 3131-3140, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38554085

RESUMO

The sulfated marine polysaccharides, fucoidan and λ-carrageenan, are known to possess anti-inflammatory, immunomodulatory, and cellular protective properties. Although they hold considerable promise for tissue engineering constructs, their covalent cross-linking in hydrogels and comparative bioactivities to cells are absent from the literature. Thus, fucoidan and λ-carrageenan were modified with methacrylate groups and were covalently cross-linked with the synthetic polymer poly(vinyl alcohol)-methacrylate (PVA-MA) to form 20 wt % biosynthetic hydrogels. Identical degrees of methacrylation were confirmed by 1H NMR, and covalent conjugation was determined by using a colorimetric 1,9-dimethyl-methylene blue (DMMB) assay. Pancreatic beta cells were encapsulated in the hydrogels, followed by culturing in the 3D environment for a prolonged period of 32 days and evaluation of the cellular functionality by live/dead, adenosine 5'-triphosphate (ATP) level, and insulin secretion. The results confirmed that fucoidan and λ-carrageenan exhibited ∼12% methacrylate substitution, which generated hydrogels with stable conjugation of the polysaccharides with PVA-MA. The cells encapsulated in the PVA-fucoidan hydrogels demonstrated consistently high ATP levels over the culture period. Furthermore, only cells in the PVA-fucoidan hydrogels retained glucose responsiveness, demonstrating comparatively higher insulin secretion in response to glucose. In contrast, cells in the PVA-λ-carrageenan and the PVA control hydrogels lost all glucose responsiveness. The present work confirms the superior effects of chemically modified fucoidan over λ-carrageenan on pancreatic beta cell survival and function in covalently cross-linked hydrogels, thereby illustrating the importance of differential polysaccharide structural features on their biological effects.


Assuntos
Carragenina , Hidrogéis , Polissacarídeos , Carragenina/química , Carragenina/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Álcool de Polivinil/química , Reagentes de Ligações Cruzadas/química , Ratos , Metacrilatos/química , Metacrilatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Insulina/química , Insulina/metabolismo
2.
Int J Biol Macromol ; 261(Pt 2): 129874, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307430

RESUMO

Bletilla Striata (BS) Polysaccharide (BSP) is one of the main components of the traditional Chinese medicinal plant Bletilla striata Rchb. F. BSP has been widely used in antimicrobial and hemostasis treatments in clinics. Despite its use in skin disease treatment and cosmetology, the effects of BSP on wound healing remain unclear. Here we investigated the anti-inflammatory, antioxidant, and analgesic effects of BSP and explored its impact on morphological changes and inflammatory mediators during wound healing. A carrageenan-induced mouse paw edema model was established to evaluate the anti-inflammatory effect of BSP. Antioxidant indicators, including NO, SOD, and MDA, were measured in the blood and liver. The increased pain threshold induced by BSP was also determined using the hot plate test. A mouse excisional wound model was applied to evaluate the wound healing rate, and HE staining and Masson staining were used to detect tissue structure changes. In addition, ELISA was employed to detect the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß in serum. BSP significantly decreased the concentration of NO and MDA in serum and liver while increasing SOD activity. It exhibited a notable improvement in mouse paw edema induced by carrageenan. BSP dose-dependently delayed the appearance of licking behavior in mice, indicating its analgesic effect. Compared to the control group, the wound healing rate was significantly improved in the BSP treatment group. HE and Masson staining results showed that the BSP and 'Jingwanhong' ointment groups had slightly milder inflammatory responses and significantly promoted more new granulation tissue formation. The levels of serum inflammatory mediators TNF-α, IL-1ß, and IL-6 were reduced to varying degrees. The results demonstrated that BSP possesses anti-inflammatory, antioxidant, analgesic, and wound healing properties, and it may promote wound healing through inhibition of inflammatory cytokine synthesis and release.


Assuntos
Antioxidantes , Fator de Necrose Tumoral alfa , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carragenina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6 , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Citocinas/metabolismo , Superóxido Dismutase/farmacologia , Cicatrização , Edema/induzido quimicamente , Edema/tratamento farmacológico , Mediadores da Inflamação/farmacologia
3.
Mol Biol Rep ; 51(1): 89, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38184807

RESUMO

BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens. METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay. RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 µg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes. CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.


Assuntos
Anti-Infecciosos , Neoplasias Bucais , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Carragenina/farmacologia , Staphylococcus aureus , Neoplasias Bucais/tratamento farmacológico , Apoptose , Candida albicans
4.
J Cell Physiol ; 238(12): 2778-2793, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909412

RESUMO

Understanding the factors that influence the biological response to inflammation is crucial, due to its involvement in physiological and pathological processes, including tissue repair/healing, cancer, infections, and autoimmune diseases. We have previously demonstrated that in vivo stretching can reduce inflammation and increase local pro-resolving lipid mediators in rats, suggesting a direct mechanical effect on inflammation resolution. Here we aimed to explore further the effects of stretching at the cellular/molecular level in a mouse subcutaneous carrageenan-inflammation model. Stretching for 10 min twice a day reduced inflammation, increased the production of pro-resolving mediator pathway intermediate 17-HDHA at 48 h postcarrageenan injection, and decreased both pro-resolving and pro-inflammatory mediators (e.g., PGE2 and PGD2 ) at 96 h. Single-cell RNA sequencing analysis of inflammatory lesions at 96 h showed that stretching increased the expression of both pro-inflammatory (Nos2) and pro-resolution (Arg1) genes in M1 and M2 macrophages at 96 h. An intercellular communication analysis predicted specific ligand-receptor interactions orchestrated by neutrophils and M2a macrophages, suggesting a continuous neutrophil presence recruiting immune cells such as activated macrophages to contain the antigen while promoting resolution and preserving tissue homeostasis.


Assuntos
Inflamação , Neutrófilos , Animais , Camundongos , Carragenina/metabolismo , Carragenina/farmacologia , Dinoprostona/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Análise de Célula Única , Camundongos Endogâmicos C57BL , Transcriptoma
5.
Int J Biol Macromol ; 253(Pt 2): 126779, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37683747

RESUMO

Wound dressing materials such as nanofiber (NF) mats have gained a lot of attention in recent years owing to their wonderful effect on accelerating the healing process and protection of wounds. In this regard, three different types of NF mats were fabricated using pure polyvinylpyrrolidone (PVP), PVP/κ-carrageenan (KG), and ursolic acid (UA) in the optimal PVP/KG ratio by electrospinning method to apply them as wound dressings. The morphology, chemical structure, degradation, porosity, mechanical properties and antioxidant activity of the produced NFs were investigated. Moreover, cell studies (e.g., cell proliferation, adhesion, and migration) and their antibacterial properties were evaluated. Adding KG and UA reduced the mean diameter size of the PVP-based NFs to ∼98 nm in the optimal sample, with defect-free morphology. The PVP/KG/UA 0.25 % exhibited the highest porosity, hydrophilicity, and degradation rate and a wound closure rate of 60 %, 2.5 times higher than that of the control group. Furthermore, this sample's proliferation and antibacterial ability were significantly higher than the other groups. These findings confirmed that the produced UA-loaded NFs have excellent properties as wound dressing.


Assuntos
Nanofibras , Carragenina/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Povidona , Ácido Ursólico
6.
Mar Drugs ; 21(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37233489

RESUMO

Oligosaccharides derived from λ-carrageenan (λ-COs) are gaining interest in the cancer field. They have been recently reported to regulate heparanase (HPSE) activity, a protumor enzyme involved in cancer cell migration and invasion, making them very promising molecules for new therapeutic applications. However, one of the specific features of commercial λ-carrageenan (λ-CAR) is that they are heterogeneous mixtures of different CAR families, and are named according to the thickening-purpose final-product viscosity which does not reflect the real composition. Consequently, this can limit their use in a clinical applications. To address this issue, six commercial λ-CARs were compared and differences in their physiochemical properties were analyzed and shown. Then, a H2O2-assisted depolymerization was applied to each commercial source, and number- and weight-averaged molar masses (Mn and Mw) and sulfation degree (DS) of the λ-COs produced over time were determined. By adjusting the depolymerization time for each product, almost comparable λ-CO formulations could be obtained in terms of molar masses and DS, which ranged within previously reported values suitable for antitumor properties. However, when the anti-HPSE activity of these new λ-COs was screened, small changes that could not be attributed only to their small length or DS changes between them were found, suggesting a role of other features, such as differences in the initial mixture composition. Further structural MS and NMR analysis revealed qualitative and semi-quantitative differences between the molecular species, especially in the proportion of the anti-HPSE λ-type, other CARs types and adjuvants, and it also showed that H2O2-based hydrolysis induced sugar degradation. Finally, when the effects of λ-COs were assessed in an in vitro migration cell-based model, they seemed more related to the proportion of other CAR types in the formulation than to their λ-type-dependent anti-HPSE activity.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Carragenina/farmacologia , Carragenina/química , Peróxido de Hidrogênio/farmacologia , Oligossacarídeos/farmacologia , Oligossacarídeos/química
7.
Inflammopharmacology ; 31(4): 1951-1966, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37188832

RESUMO

Diosgenin (DGN) is a well-known steroidal sapogenin that is obtained from the hydrolysis of dioscin. The current research aimed to explore the anti-inflammatory and anti-arthritic potential of DGN alone and in combination with methotrexate (MTX). The in-vitro antioxidant, and anti-arthritic potential was assessed by protein denaturation and Human red blood cell membrane stabilization assays. The in-vivo anti-inflammatory effect was examined by carrageenan-induced paw edema and xylene-induced ear edema methods. The arthritis was induced in Wistar rats by inoculation of 0.1 ml Complete Freund's adjuvant in the left hind paw at day 1. The arthritic animals received MTX 1 mg/kg as standard, DGN at 5, 10, 20 mg/kg, and a combination treatment (DGN 20 mg/kg + MTX) was administered orally from 8 to 28th day while normal and disease control received normal saline. DGN at 1600 µg/ml exhibited the highest in-vitro activities in contrast to other tested concentrations. DGN at 20 mg/kg exhibited the maximum (p < 0.05-0.0001) inhibition of inflammation in carrageenan and xyleneinduced edema models. Treatment with DGN and MTX alone and in combination significantly reduced the paw diameter, body weight, arthritic index, and pain. It restored altered blood parameters and oxidative stress biomarkers in contrast to the diseased control rats. DGN profoundly (P < 0.0001) downregulated mRNA expression of TNF-α, IL-1ß, NF-ĸß, and COX-2 while upregulated IL-4 and -10 in treated rats. The combination of DGN with MTX showed the highest therapeutic efficacy than individual therapy, so it can be used as an adjunct for rheumatoid arthritis treatment.


Assuntos
Artrite Experimental , Diosgenina , Sapogeninas , Ratos , Humanos , Animais , Citocinas/metabolismo , Ratos Wistar , Sapogeninas/efeitos adversos , Carragenina/farmacologia , Artrite Experimental/metabolismo , Metotrexato/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo , Edema/tratamento farmacológico , Biomarcadores/metabolismo , Diosgenina/farmacologia
8.
Cryobiology ; 111: 104-112, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142111

RESUMO

Azeri water buffalo is a species of great interest due to the high quality of its products such as milk. Due to the decreasing trend of its number and risk of extinction in the future, our attention is directed towards ensuring the preservation of its genetic reserves by keeping its sperm. Using antioxidants in semen extender is one of the ways to reduce the detrimental effects of freezing process on post-thawed quality of spermatozoa. This study was conducted to determine the effect of κ-carrageenan (k-CRG) and C60HyFn supplemented semen extender on the quality of post-thawed Azari water buffalo spermatozoa. A total of 30 semen samples were obtained from three buffaloes using an artificial vagina (twice a week for five weeks = 10 replicates). The samples (n = 3) from each replicate were pooled and divided into equal aliquots to prepare 14 extender groups, including control (C), k-0.2, K-0.4, K-0.6, K-0.8 (containing 0.2, 0.4, 0.8 mg K-CRG/mL, respectively), C-0.1, C-0.2, C-0.4, C-0.8, C-1, C-5, C-10, C-20, and C-40 (containing 0.1, 0.2, 0.4, 0.6, 0.8, 1, 5, 10, 20, 40 µM C60HyFn, respectively), and then frozen. After thawing, motility and velocity parameters, plasma membrane integrity (PMI) and functionality (PMF), DNA damage, Hypo-osmotic swelling (HOS) test, malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase glutathione activities and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging were evaluated. In vivo fertility was compared between k-0.6, C-1 and control groups. 60 buffalo were inseminated 24 h after the onset of estrus. The diagnosis of pregnancy was performed rectally at least 60 days after fertilization. Total and progressive motility and velocity parameters were improved by k-0.4, k-0.6, k-0.8, C-0.4, C-0.8, C-1, C-5, and C-10 groups) compared to the other groups. Plasma membranes integrity and PMF were improved by k-0.4, k-0.6, C-0.4, C-0.8, C-1, C-5, and C-10 groups compared to other groups, while in terms of sperm DNA damage K-0.4, K-0.6, K-0.8, C-0.2, C-0.4, C-0.8, C-1, C-5, and C-10 groups showed better results compared to the control group. The evidence also showed that k- 0.4, k-0.6, k-0.8, C-0.4, C-0.8, C-1, C-5, and C-10 groups could improve TAC, and decrease MDA levels. Also, k-0.4, k-0.6, k-0.8, C-0.2, C-0.4, C-0.8, C-1, C-5, and C-10 groups could improve GPx, CAT, and GSH levels, but no significant difference was found regarding SOD compared to the other groups. DPPH scavengers were tested by K-0.6, K-0.8 and C-1, C-5, C-10, C-0.8, C-0.4 and C-0.2 groups and compared to other groups improved. The fertility rate [70% (14/20)] was higher in C-1 than other groups. To conclude that k-CRG and C60HyFn supplementation can increase the quality parameters of cryopreserved buffalo semen after thawing and that 1 M C60HyFn can increase in vivo fertility of buffalo semen.


Assuntos
Preservação do Sêmen , Sêmen , Animais , Feminino , Gravidez , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Búfalos , Carragenina/metabolismo , Carragenina/farmacologia , Criopreservação/métodos , Motilidade dos Espermatozoides , Crioprotetores/farmacologia , Crioprotetores/metabolismo , Espermatozoides , Análise do Sêmen/veterinária , Estresse Oxidativo , Glutationa/farmacologia , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Superóxido Dismutase/metabolismo
9.
Int J Biol Macromol ; 241: 124490, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37076080

RESUMO

Polysaccharides κ-carrageenan (κ-Car) have become a predominant source in developing bioactive materials. We aimed to develop biopolymer composite materials of κ-Car with coriander essential oil (CEO) (κ-Car-CEO) films for fibroblast-associated wound healing. Initially, we loaded the CEO in to κ-Car and CEO through homogenization and ultrasonication to fabricate composite film bioactive materials. After performing morphological and chemical characterizations, we validated the developed material functionalities in both in vitro and in vivo models. The chemical and morphological analysis with physical structure, swelling ratio, encapsulation efficiency, CEO release, and water barrier properties of films examined and showed the structural interaction of κ-Car and CEO-loaded into the polymer network. Furthermore, the bioactive applications of CEO release showed initial burst release followed by controlled release from the κ-Car composite film with fibroblast (L929) cell adhesive capabilities and mechanosensing. Our results proved that the CEO-loaded into the κ-Car film impacts cell adhesion, F-actin organization, and collagen synthesis, followed by in vitro mechanosensing activation, further promoting wound healing in vivo. Our innovative perspectives of active polysaccharide (κ-Car)-based CEO functional film materials could potentially accomplish regenerative medicine.


Assuntos
Materiais Biocompatíveis , Óleos Voláteis , Carragenina/farmacologia , Carragenina/química , Materiais Biocompatíveis/farmacologia , Cicatrização , Óleos Voláteis/farmacologia , Polímeros
10.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108822

RESUMO

Comparative structural analysis of gelling polysaccharides from A. flabelliformis and M. pacificus belonging to Phyllophoraceae and the effect of their structural features and molecular weight on human colon cancer cell lines (HT-29, DLD-1, HCT-116) was carried out. According to chemical analysis, IR and NMR spectroscopies, M. pacificus produces kappa/iota-carrageenan with a predominance of kappa units and minor amounts of mu and/or nu units, while the polysaccharide from A. flabelliformis is iota/kappa-carrageenan (predominance of iota units) and contains negligible amounts of beta- and nu-carrageenans. Iota/kappa- (Afg-OS) and kappa/iota-oligosaccharides (Mp-OS) were obtained from the original polysaccharides through mild acid hydrolysis. The content of more sulfated iota units in Afg-OS (iota/kappa 7:1) was higher than in Mp-OS (1.0:1.8). The poly- and oligosaccharides up to 1 mg/mL did not show a cytotoxic effect on all tested cell lines. Polysaccharides showed an antiproliferative effect only at 1 mg/mL. Oligosaccharides had a more pronounced effect on HT-29 and HCT-116 cells than the original polymers, while HCT-116 cells were slightly more sensitive to their action. Kappa/iota-oligosaccharides exhibit a greater antiproliferative effect and more strongly decrease the number of colonies forming in HCT-116 cells. At the same time, iota/kappa-oligosaccharides inhibit cell migration more strongly. Kappa/iota-oligosaccharides induce apoptosis in the SubG0 and G2/M phases, while iota/kappa-oligosaccharides in the SubG0 phase.


Assuntos
Rodófitas , Alga Marinha , Humanos , Carragenina/farmacologia , Carragenina/química , Alga Marinha/química , Rodófitas/química , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo
11.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110876

RESUMO

Catharanthus roseus is a medicinal plant that produces indole alkaloids, which are utilized in anticancer therapy. Vinblastine and vincristine, two commercially important antineoplastic alkaloids, are mostly found in the leaves of Catharanthus roseus. ĸ-carrageenan has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ĸ-carrageenan as a promoter of plant growth and phytochemical constituents, especially alkaloids production in Catharanthus roseus, an experiment was carried out to explore the effect of ĸ-carrageenan on the plant growth, phytochemicals content, pigments content, and production of antitumor alkaloids in Catharanthus roseus after planting. Foliar application of ĸ-carrageenan (at 0, 400, 600 and 800 ppm) significantly improved the performance of Catharanthus roseus. Phytochemical analysis involved determining the amount of total phenolics (TP), flavonoids (F), free amino acids (FAA), alkaloids (TAC) and pigments contents by spectrophotometer, minerals by ICP, amino acids, phenolic compounds and alkaloids (Vincamine, Catharanthine, Vincracine (Vincristine), and vinblastine) analysis uses HPLC. The results indicated that all examined ĸ-carrageenan treatments led to a significant (p ≤ 0.05) increase in growth parameters compared to the untreated plants. Phytochemical examination indicates that the spray of ĸ-carrageenan at 800 mg L-1 increased the yield of alkaloids (Vincamine, Catharanthine and Vincracine (Vincristine)) by 41.85 µg/g DW, total phenolic compounds by 3948.6 µg gallic/g FW, the content of flavonoids 951.3 µg quercetin /g FW and carotenoids content 32.97 mg/g FW as compared to the control. An amount of 400 ppm ĸ-carrageenan treatment gave the best contents of FAA, Chl a, Chl b and anthocyanin. The element content of K, Ca, Cu, Zn and Se increased by treatments. Amino acids constituents and phenolics compounds contents were altered by ĸ-carrageenan.


Assuntos
Alcaloides , Catharanthus , Alcaloides de Triptamina e Secologanina , Alcaloides de Vinca , Vincamina , Vimblastina/farmacologia , Vincristina/farmacologia , Carragenina/farmacologia , Catharanthus/química , Vincamina/farmacologia , Alcaloides/farmacologia , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia , Aminoácidos/metabolismo , Alcaloides de Triptamina e Secologanina/farmacologia
12.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047438

RESUMO

This study aims to investigate the impact of kappa-carrageenan on dental pulp stem cells (DPSCs) behavior in terms of biocompatibility and odontogenic differentiation potential when it is utilized as a component for the production of 3D sponge-like scaffolds. For this purpose, we prepared three types of scaffolds by freeze-drying (i) kappa-carrageenan/chitosan/gelatin enriched with KCl (KCG-KCl) as a physical crosslinker for the sulfate groups of kappa-carrageenan, (ii) kappa-carrageenan/chitosan/gelatin (KCG) and (iii) chitosan/gelatin (CG) scaffolds as a control. The mechanical analysis illustrated a significantly higher elastic modulus of the cell-laden scaffolds compared to the cell-free ones after 14 and 28 days with values ranging from 25 to 40 kPa, showing an increase of 27-36%, with the KCG-KCl scaffolds indicating the highest and CG the lowest values. Cell viability data showed a significant increase from days 3 to 7 and up to day 14 for all scaffold compositions. Significantly increasing alkaline phosphatase (ALP) activity has been observed over time in all three scaffold compositions, while the KCG-KCl scaffolds indicated significantly higher calcium production after 21 and 28 days compared to the CG control. The gene expression analysis of the odontogenic markers DSPP, ALP and RunX2 revealed a two-fold higher upregulation of DSPP in KCG-KCl scaffolds at day 14 compared to the other two compositions. A significant increase of the RunX2 expression between days 7 and 14 was observed for all scaffolds, with a significantly higher increase of at least twelve-fold for the kappa-carrageenan containing scaffolds, which exhibited an earlier ALP gene expression compared to the CG. Our results demonstrate that the integration of kappa-carrageenan in scaffolds significantly enhanced the odontogenic potential of DPSCs and supports dentin-pulp regeneration.


Assuntos
Quitosana , Alicerces Teciduais , Quitosana/metabolismo , Gelatina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Carragenina/farmacologia , Polpa Dentária/metabolismo , Células Cultivadas , Biomimética , Células-Tronco/metabolismo , Regeneração , Diferenciação Celular , Dentina/metabolismo
13.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902109

RESUMO

κ-Selenocarrageenan (KSC) is an organic selenium (Se) polysaccharide. There has been no report of an enzyme that can degrade κ-selenocarrageenan to κ-selenocarrageenan oligosaccharides (KSCOs). This study explored an enzyme, κ-selenocarrageenase (SeCar), from deep-sea bacteria and produced heterologously in Escherichia coli, which degraded KSC to KSCOs. Chemical and spectroscopic analyses demonstrated that purified KSCOs in hydrolysates were composed mainly of selenium-galactobiose. Organic selenium foods through dietary supplementation could help regulate inflammatory bowel diseases (IBD). This study discussed the effects of KSCOs on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in C57BL/6 mice. The results showed that KSCOs alleviated the symptoms of UC and suppressed colonic inflammation by reducing the activity of myeloperoxidase (MPO) and regulating the unbalanced secretion of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10). Furthermore, KSCOs treatment regulated the composition of gut microbiota, enriched the genera Bifidobacterium, Lachnospiraceae_NK4A136_group and Ruminococcus and inhibited Dubosiella, Turicibacter and Romboutsia. These findings proved that KSCOs obtained by enzymatic degradation could be utilized to prevent or treat UC.


Assuntos
Carragenina , Colite Ulcerativa , Microbioma Gastrointestinal , Compostos Organosselênicos , Animais , Camundongos , Colite Ulcerativa/prevenção & controle , Colite Ulcerativa/terapia , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Carragenina/farmacologia , Carragenina/uso terapêutico , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico
14.
J Ethnopharmacol ; 305: 116124, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36587880

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Callicarpa longissima is a typical Yao ethnomedicine that has been used to treat arthritis in China. Our previous study found that the dichloromethane extract (DCME) of C. longissima showed anti-inflammatory activity in vitro. However, the anti-inflammatory mechanism and detailed chemical composition of DCME remain unclear, which lead to the original interest of this study. AIM OF THE STUDY: The study aimed to evaluate the anti-inflammatory properties of the DCME from C. longissima and further explore the accurate chemical components responsible for this active extract. MATERIALS AND METHODS: The anti-inflammatory activity of DCME in vivo was tested with carrageenan-induced mice paw edema model. Its anti-inflammatory mechanism was explored with LPS-stimulated RAW264.7 macrophages model. The compounds in DCME were isolated by repeated column chromatography and their structures were identified on the basis of nuclear magnetic resonance spectroscopy. The anti-inflammatory activities of the isolates in vitro were also tested by suppressing releases of inflammatory mediators (NO, IL-6 and TNF-α) in RAW264.7 macrophages model. In addition, the molecular docking analysis, which evaluated the potential interaction between the compounds and Toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB), was performed. RESULTS: DCME effectively alleviated the mice paw edema induced by carrageenan. In LPS-stimulated RAW264.7 cells, DCME significantly decreased the production of interleukin (IL)-6 and tumor necrosis factor α (TNF-α) via inhibiting their mRNA transcription, down-regulated the expression of TLR4 and myeloid differentiation factor 88, inhibited the phosphorylation of alpha inhibitor of NF-κB (IκBα), NF-κB p65, and degradation of IκBα. Twelve diterpenoid phenols were identified from DCME, and they not only showed different inhibitory effects on the production of NO, IL-6 and TNF-α in LPS-stimulated RAW264.7 cells, but also could bind to TLR4 and NF-κB as analyzed by molecular docking. CONCLUSIONS: Taken together, DCME from C. longissima could inhibit inflammatory response both in vitro and in vivo, which is mainly attributed to the synergistic effect of abundant diterpenoid phenols through inhibiting the TLR4/NF-κB signaling pathway, and might be a promising agent for the treatment of inflammatory diseases.


Assuntos
Callicarpa , Diterpenos , Animais , Camundongos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Cloreto de Metileno/efeitos adversos , Interleucina-6/metabolismo , Carragenina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Anti-Inflamatórios/efeitos adversos , Diterpenos/farmacologia , Edema/induzido quimicamente , Edema/tratamento farmacológico
15.
Carbohydr Polym ; 298: 120123, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241295

RESUMO

Tumor surgery is often accompanied by tumor residue, tissue defects, bleeding, and bacterial infection, which can easily cause tumor recurrence, low survival rates, and delay wound healing. In this study, a multifunctional hydrogel (CA-AuAgNPs-Gel) was developed to prevent tumor recurrence and promote wound healing after tumor surgery in the absence of chemotherapeutic drugs and antibiotics. CA-AuAgNPs-Gel was prepared using iota carrageenan (CA)-capped gold­silver nanoparticles (CA-AuAgNPs) and poloxamer 407 (F127), which exhibited good biocompatibility, injectability, and near-infrared (NIR) photothermal responsiveness. CA-AuAgNPs-Gel inhibited the growth of 4T1 breast cancer in situ and the recurrence of surgically resected B16F10 melanoma. It also effectively stopped bleeding and promoted tumor postsurgical wound healing in vivo. Importantly, CA-AuAgNPs-Gel induced tumor apoptosis via photothermal-induced hyperthermia and immunogenic cell death (ICD) under NIR laser radiation. Collectively, this hydrogel shows significant clinical application prospects for inhibiting tumor recurrence and promoting wound healing for postsurgical tumor treatment.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Antibacterianos/química , Carragenina/farmacologia , Ouro/farmacologia , Humanos , Hidrogéis/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Poloxâmero , Prata/farmacologia , Cicatrização
16.
PLoS One ; 17(10): e0276020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228005

RESUMO

Strawberry (Fragaria ananassa) is one of the richest sources containing a wide variety of nutritive compounds. Anti-inflammatory activities of fermented rice cake made of strawberry powder as well as rice powder were evaluated. The fermented rice cake containing strawberry powder (SRC) significantly and dose-dependently inhibited NO production in LPS-stimulated RAW264.7 cells without cytotoxicity. Also, SRC effectively suppressed inflammatory gene expression, including iNOS, COX-2, IL-1ß, IL-6, and TNF-α. In addition, the production of PGE2, IL-1ß, IL-6, and TNF-α was significantly reduced. Furthermore, the anti-inflammatory effect of SRC was investigated using carrageenan-induced paw edema of ICR mice. It was demonstrated that pre-orally administration of SRC at a dose of 50 and 100 mg/kg BW significantly inhibited paw edema induced by carrageenan. This study suggested that the anti-inflammation activities of strawberry rice cake give the potential for increasing the commercialization of rice cake and rice products.


Assuntos
Fragaria , Oryza , Animais , Anti-Inflamatórios/uso terapêutico , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Alimentos Fermentados , Fragaria/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Oryza/metabolismo , Pós/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
17.
J Ethnopharmacol ; 298: 115583, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028166

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Vitex trifolia L. (V. trifolia L.), commonly known as the three-leaved chaste tree, is extensively employed in traditional Chinese medicine (TCM) to treat various conditions associated with inflammation. AIM OF THE STUDY: The present study aimed to delineate the molecular mechanisms responsible for the anti-inflammatory effect of V. trifolia L. in carrageenan (CA)-induced acute inflammation in experimental rats. MATERIALS AND METHODS: CA-induced rat paw edema model was adopted to investigate the anti-inflammatory effect of methanolic extract from leaves of V. trifolia L. (VTME) in vivo. Leukocyte infiltration into the site of inflammation was determined by histopathological analysis. Further, the effect of VTME on CA-induced local and systemic levels of specific cytokines was quantified by enzyme-linked immunosorbent assay (ELISA). Moreover, its impact on the nuclear translocation of nuclear factor Kappa B (NF-κB) was analyzed by employing the western blotting technique. RESULTS: VTME at the doses of 100 mg/kg and 200 mg/kg significantly inhibited the paw edema induced by CA (p < 0.05) and effectively reduced the inflammatory leukocyte infiltration. Further, VTME markedly inhibited the CA-induced levels of Interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α in tissue, and that of cytokine-induced neutrophil chemoattractant (CINC)-2/C-X-C motif chemokine (CXCL)3 and CINC-3/CXCL2 in tissue as well as in serum. On the other hand, VTME significantly upregulated the tissue concentration of anti-inflammatory cytokine IL-10. Moreover, VTME significantly attenuated the CA-induced IκBα degradation and nuclear translocation of NF-κB p65. CONCLUSIONS: Our results demonstrate the potent anti-inflammatory effect of V. trifolia L. in vivo, providing insight into its molecular mechanism, which is mediated through down-regulation of NF-κB signal transduction.


Assuntos
Vitex , Animais , Anti-Inflamatórios , Carragenina/farmacologia , Citocinas/metabolismo , Regulação para Baixo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Vitex/metabolismo
18.
Adv Healthc Mater ; 11(18): e2201049, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817589

RESUMO

Incomplete contact between a pre-formed hydrogel and irregular wound limits the therapeutic effect of the dressing and increases the risk of infection; while great concerns have remained regarding the potential toxicity of the residual additives of chemical crosslinking for in situ forming hydrogels. Therefore, it is desirable to develop a self-adaptive hydrogel in response to skin temperature with shape adaptability and efficient antibacterial properties to prevent microbial invasion. Herein, a dually-thermoresponsive hydrogel composed of poly(N-isopropylacrylamide) (PNIPAm) and methacrylated κ-carrageenan (MA-κ-CA) is designed with compliance at physiological temperature to realize shape adaptability for completely covering irregular wounds. Furthermore, the hydrogel with near-infrared (NIR)-responsive polypyrrole-polydopamine nanoparticles (PPy-PDA NPs) and Zn2+ -derived zeolitic imidazolate framework (ZIF-8) can generate localized heat and gradually release Zn2+ to realize safe, effective synergetic photothermal-chemical bactericidal capability. In addition, the release rate of Zn2+ can be accelerated by NIR-induced heating, and thus a more efficient sterilization can be provided to severely infected wounds. Therefore, the proposed hydrogel would serve as a promising wound dressing for the full course of wound healing, with the abilities of perfectly covering the wound and adapting to regenerating tissue, and controllable photothermal-chemical antibacterial capability to reach high bactericidal efficiency and long-term release of antibacterial agents.


Assuntos
Hidrogéis , Polímeros , Antibacterianos/química , Carragenina/farmacologia , Hidrogéis/química , Polímeros/química , Pirróis , Cicatrização
19.
Inflammopharmacology ; 30(5): 1759-1768, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35723848

RESUMO

N-Acetylcysteine (NAC) is a chemical compound with anti-inflammatory and antioxidant activity and acts as a free radical scavenger. Elaeagnus angustifolia (EA) is a plant native to the western part of Iran, with antioxidant and anti-inflammatory properties. The present study been taken evaluated the protective effect afforded by EA and NAC extracts on carrageenan-induced acute lung injury in Wistar rats. In this study, 42 rats were randomly assigned into seven groups. NAC and EA extracts were orally administered once/day for 21 continuous days. Pulmonary damage was induced by intratracheal injection of 100 µl of 2% λ-Carrageenan on day 21. Twenty-four hours post-surgery, the rats were euthanized and the samples were collected. Pretreatment with NAC and EA extracts reduced the total and differential cell accumulation as well as IL-6, and TNF-α cytokines. Antioxidant indicators demonstrate that in the groups receiving NAC and EA extract, MDA decreased while thiol and antioxidant capacity elevated. Treatment with NAC and EA significantly reduced Carrageenan-induced pathological pulmonary tissue injury. NAC and EA extract has protective effects on acute carrageenan-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Elaeagnaceae , Acetilcisteína/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Carragenina/farmacologia , Citocinas , Elaeagnaceae/química , Sequestradores de Radicais Livres/farmacologia , Interleucina-6 , Pulmão , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Compostos de Sulfidrila/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
20.
Inflammopharmacology ; 30(5): 1853-1870, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35639234

RESUMO

Eleusine coracana (L.) Gaertn (E. coracana) is one of the highest consuming food crops in Asia and Africa. E. coracana is a plant with several medicinal values including anti-ulcerative, anti-diabetic, anti-viral and anti-cancer properties. However, the anti-inflammatory property of E. coracana remains to be elucidated. Therefore, the objective of present study was to investigate the potential in isolated molecule from E. coracana via a combination of in vitro, in vivo and in silico methods. In this study, we have isolated, purified and characterized an anti-inflammatory molecule from E. coracana bran extract known as syringol. Purification of syringol was accomplished by combination of GC-MS and RP-HPLC techniques. Syringol significantly inhibited the enzymes activity of sPLA2 (IC50 = 3.00 µg) and 5-LOX (IC50 = 0.325 µg) in vitro. The inhibition is independent of substrate concentration, calcium ion concentration and was irreversible. Syringol interacts with purified sPLA2 enzymes as evidenced by fluorescence and molecular docking studies. Further, the syringol molecule dose dependently inhibited the development of sPLA2 and λ-carrageenan induced edema. Furthermore, syringol decreases the expression of cPLA2, COX-2, IκBα, p38 and MPO in edematous tissues as demonstrated by western blots. These studies revealed that syringol isolated from E. coracana bran may develop as a potent anti-inflammatory molecule.


Assuntos
Eleusine , Fosfolipases A2 Secretórias , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cálcio/metabolismo , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo , Edema/tratamento farmacológico , Edema/metabolismo , Eleusine/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Inibidor de NF-kappaB alfa/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/uso terapêutico , Extratos Vegetais/uso terapêutico , Pirogalol/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA